An Analytic Solution for Fractional Order Riccati Equations by Using Optimal Homotopy Asymptotic Method
نویسندگان
چکیده
The paper must have abstract. In this paper, we present an approximate analytical algorithm to solve non-linear quadratic Riccati differential equations of fractional order based on the optimal homotopy asymptotic method (OHAM). OHAM has the benefit of adjusting the convergence rate and the region of the solution series via several auxiliary parameters over the homotopy analysis method (HAM) that has only one auxiliary parameter. The proposed algorithm is applied to initial value problems of the fractional order Riccati equations employing both non-integer and integer derivatives. Additionally, our proposed algorithm outcomes are compared against the Adams-Bashforth-Moulton numerical method (ABFMM) and other well-known analytical methods.
منابع مشابه
MODIFICATION OF THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR LANE-EMDEN TYPE EQUATIONS
In this paper, modication of the optimal homotopy asymptotic method (MOHAM) is appliedupon singular initial value Lane-Emden type equations and results are compared with the available exactsolutions. The modied algorithm give the exact solution for dierential equations by using one iterationonly.
متن کاملA study of a Stefan problem governed with space–time fractional derivatives
This paper presents a fractional mathematical model of a one-dimensional phase-change problem (Stefan problem) with a variable latent-heat (a power function of position). This model includes space–time fractional derivatives in the Caputo sense and time-dependent surface-heat flux. An approximate solution of this model is obtained by using the optimal homotopy asymptotic method to find the solu...
متن کاملA Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)
Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...
متن کاملThe comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation
In recent years, numerous approaches have been applied for finding the solutions of functional equations. One of them is the optimal homotopy asymptotic method. In current paper, this method has been applied for obtaining the approximate solution of Fisher equation. The reliability of the method will be shown by solving some examples of various kinds and comparing the obtained outcomes with the ...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کامل